Tag : stem cells

Written on Jul, 08, 2020 by in ,
TempoATP – a snapshot

Genetically encoded biosensors have become popular and powerful LIVE-cell reporters in recent years (see reference here). These biosensors can be incorporated into a variety of human inducible pluripotent stem cells (iPSCs) and iPSC-derived cell types (such as neurons, glial cells, kidney cells, and cardiomyocytes, just to name a few). Previously, we discussed the biosensors and how they are used in research (here). TempoATP biosensor (image shown above) is a LIVE-cell reporter that tracks intracellular ATP levels in real time (from seconds to hours).

(more…)Tell us more...Continue Reading...
Written on Aug, 07, 2019 by in , ,

Cardiomyocytes are cardiac muscle cells. They are terminally differentiated and facilitate contractile forces (“beatings”) of the heart. Grown in vitro as a monolayer sheath, cardiomyocytes are connected by gap junction proteins that help synchronize contraction-relaxation cycles of the cardiomyocytes. Cardiomyocytes may be used in various in vitro or in vivo studies; transplantation into normal or diseased systems; cardiac toxicology studies; or cardiovascular developmental studies. Cardiomyocytes have a high mitochondrial density, which allows them to produce adenosine triphosphate (ATP) quickly, making them highly resistant to fatigue.

(more…)Tell us more...

Continue Reading...
Written on Dec, 17, 2018 by in ,

The increasing complexity of novel therapies calls for disease models that take us closer than ever before to the in vivo situation, to maximize efficacy and safety evaluations of new experimental treatments. Significant improvements in our understanding of mammalian tissue development, homeostasis, and extracellular matrix biology, coupled with advances in human iPSCs (adult stem cells) and 3D culture have facilitated the generation of organoids and organ-on-a-chip technologies that serve as in vitro 3D models of healthy and diseased mammalian tissue. These technologies aim to become an integral part of research and drug discovery to provide novel insights into biological processes, mechanisms of disease, and responses to drug candidates and other treatments.

Tempo Bioscience attended the World Preclinical Congress Europe in Lisbon last month. This congress centers on preclinical research across a broad disease spectrum, and aims to illuminate the challenges and opportunities within early drug discovery and development. This years program covered topics spanning organ-on-a-chip, 3D cellular models, human induced pluripotent stem cells (hiPSC), and artificial intelligence and machine learning in drug discovery, to name a few. Of particular interest to Tempo Bioscience, the meeting highlighted progress as well as challenges with organs-on-chips, with the latter including scalability and adaption of the technology for applications in the biopharma industry. Here, we round up our top 3 symposium highlights within the organ-on-a-chip space.

(more…)Tell us more...

Continue Reading...