Tag : regenerative medicine

Written on Jun, 18, 2018 by in ,

In addition to their potential for cellular therapy and modeling of developmental processes and disease, mesenchymal cells (MSCs) are rapidly gaining traction in cancer therapy. Although they are not the only stem cells with anti-cancer activity, MSCs are often preferred because of their low immunogenicity and inherent ability to migrate to tumor sites, the latter feature believed to be the result of an inflammatory signaling cascade similar to that in wounded sites.

MSCs have documented tropism for many tumor types, such as breast, brain, and liver tumors, as well as pre-metastatic niches – sites in secondary organs that are favorable for metastasis by a primary tumor (1). Depending on many factors in the tumor microenvironment, including the source and type of MSCs and the cell-surface receptors they express (e.g., TLRs), the type of cancer cells, factors secreted in the tumor microenvironment, and interactions between MSCs, immune cells and cancer cells, MSCs can promote pro- or anti-tumorigenic effects (2).

(more…)

Tell us more...Continue Reading...
Written on May, 02, 2018 by in , ,

We gave you an introduction to mesenchymal cells (MSCs) in one of our earlier Cell of the Month posts. Staying with the theme of recapitulating in vivo development processes (check out our most recent post on organoids), we wanted to take a closer look at MSCs and their two applications that have attracted most attention to date – cellular therapies and research models.  (more…)

Tell us more...Continue Reading...
Written on Feb, 20, 2018 by in , ,

Genetic variability can be defined as the genetic differences that exist within or between populations of individuals, and explains the remarkable differences between humans, despite the fact that we share 99.5 % of our DNA with each other.

Genetic variability includes differences in both the coding and non-coding regions of our DNA and is brought about by variants. Simply put, variants are genotype alterations (e.g., mutations) that may or may not result in observable changes (e.g., a novel trait, disease). For any given gene or allele present in a population, a number of variants exist. Variants may be benign e.g., those governing hair and eye color, or pathogenic e.g., the variants associated with some types of cystic fibrosis, diabetes, high blood pressure, and hereditary cardiomyopathy, to name a few.  

(more…)

Tell us more...Continue Reading...