Author : Karen O'Hanlon Cohrt

Written on Dec, 17, 2018 by in ,

The increasing complexity of novel therapies calls for disease models that take us closer than ever before to the in vivo situation, to maximize efficacy and safety evaluations of new experimental treatments. Significant improvements in our understanding of mammalian tissue development, homeostasis, and extracellular matrix biology, coupled with advances in human iPSCs (adult stem cells) and 3D culture have facilitated the generation of organoids and organ-on-a-chip technologies that serve as in vitro 3D models of healthy and diseased mammalian tissue. These technologies aim to become an integral part of research and drug discovery to provide novel insights into biological processes, mechanisms of disease, and responses to drug candidates and other treatments.

Tempo Bioscience attended the World Preclinical Congress Europe in Lisbon last month. This congress centers on preclinical research across a broad disease spectrum, and aims to illuminate the challenges and opportunities within early drug discovery and development. This years program covered topics spanning organ-on-a-chip, 3D cellular models, human induced pluripotent stem cells (hiPSC), and artificial intelligence and machine learning in drug discovery, to name a few. Of particular interest to Tempo Bioscience, the meeting highlighted progress as well as challenges with organs-on-chips, with the latter including scalability and adaption of the technology for applications in the biopharma industry. Here, we round up our top 3 symposium highlights within the organ-on-a-chip space.

(more…)

Tell us more...Continue Reading...
Written on Oct, 22, 2018 by in ,

Genetically Encoded Biosensors for Research and Drug Discovery

Mitochondrial integrity and function are pivotal to cellular energy production, and mitochondrial dysfunction has been shown to alter the cell cycle, metabolism, cell viability, gene regulation, and other critical aspects of cellular growth and survival.

Mitochondrial Dysfunction – Disease and Cytotoxicity

Mitochondrial dysfunction is associated with a broad spectrum of diseases. For example, in cancer, glycolysis persists to continuously supply ATP for tumor growth while bypassing the need for healthy mitochondria in a phenomenon known as the Warburg Effect (1). Although the underlying genetic reasons for the links between aerobic glycolysis, tumor growth, and hypoxia are not fully understood, the available evidence supports a link between the ability of cancer cells to bypass normal cellular metabolic pathways and mitochondrial dysfunction. Elsewhere, research into neurodegenerative disorders (e.g., Alzheimer’s, amyotrophic lateral sclerosis (ALS), Huntington’s, and Parkinson’s) has revealed the essentiality of mitochondria for neuronal survival, cellular metabolism, and reactive oxygen species production (ROS). Neurons depend on oxidative phosphorylation as a critical source of energy and are very sensitive to intracellular ROS. Consequently, mitochondrial biogenesis and dysfunction are associated with neurodegeneration and aging.

(more…)

Tell us more...Continue Reading...
Written on Oct, 01, 2018 by in ,

Gene reporter assays have contributed hugely to our understanding of how genes are regulated during growth and development, for example, through the study of spatiotemporal gene expression patterns, as well as how gene expression is regulated by transcription factors, gene regulatory elements (so-called cis-acting elements), and exogenous regulators (trans-acting factors). Besides investigating gene regulation, gene reporter assays are also useful in transfection experiments, both to optimize and standardize transfection efficiencies and to screen transfected cells in routine workflows.  (more…)

Tell us more...Continue Reading...