Category : iPSCs

Written on Jul, 08, 2020 by in ,
TempoATP – a snapshot

Genetically encoded biosensors have become popular and powerful LIVE-cell reporters in recent years (see reference here). These biosensors can be incorporated into a variety of human inducible pluripotent stem cells (iPSCs) and iPSC-derived cell types (such as neurons, glial cells, kidney cells, and cardiomyocytes, just to name a few). Previously, we discussed the biosensors and how they are used in research (here). TempoATP biosensor (image shown above) is a LIVE-cell reporter that tracks intracellular ATP levels in real time (from seconds to hours).

(more…)Continue Reading...
Written on Aug, 07, 2019 by in , ,

Cardiomyocytes are cardiac muscle cells. They are terminally differentiated and facilitate contractile forces (“beatings”) of the heart. Grown in vitro as a monolayer sheath, cardiomyocytes are connected by gap junction proteins that help synchronize contraction-relaxation cycles of the cardiomyocytes. Cardiomyocytes may be used in various in vitro or in vivo studies; transplantation into normal or diseased systems; cardiac toxicology studies; or cardiovascular developmental studies. Cardiomyocytes have a high mitochondrial density, which allows them to produce adenosine triphosphate (ATP) quickly, making them highly resistant to fatigue.

(more…)

Continue Reading...
Written on Mar, 22, 2019 by in , ,

Welcome back to our cell of the month series. This time we’re talking about CD34+ cells, a type of undifferentiated multipotent hematopoetic stem cell (HSC) with the potential to differentiate into almost any other blood cell type under specific conditions. As stem cells, CD34+ cells naturally have the capacity for self-renewal, allowing them to divide and replicate indefinitely, making them a highly valuable source of hematopoetic cells in research and clinical settings. However, the CD34+ cell population in blood is extremely small, and is estimated to represent less than 0.5% of all other blood cell types.

(more…)

Continue Reading...